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ABSTRACT

Recent genomic analyses on the cellular metabolic network show that reaction flux
across enzymes are diverse and exhibit scale-free behaviorin its distribution. Con-
sidering the roles played by main arteries or principal highways, one may guess that
the reactions with larger fluxes are more likely to be lethal under the blockade of its
catalyzing gene products or gene knockouts. However, we find, by in silico flux analy-
sis, that the lethality rarely has correlations with the fluxlevel owing to the widespread
backup pathways innate in the genome-wide metabolism ofEscherichia coli. Lethal
reactions, of which the deletion generates cascading failure of following reactions up to
the biomass reaction, are identified in terms of the Boolean network scheme as well as
the flux balance analysis, where the avalanche size, the distribution of which follows a
power law, turns out to be a useful measure of lethality. Evenif the single deletion itself
may not lead to the fatal results, simultaneous removal of two or more reactions can
cause the failure of the biomass reaction, for which we adoptthe term synthetic lethality
as a metabolic homologue of the same situation in gene knockout studies. Identification
of synthetic lethals in genome-wide metabolism provides a novel way to improve our un-
derstanding of essential biochemical reaction processes and their functionally redundant
pathways, which is of potential applications to metabolic engineering.



Complex machinery of cellular metabolism occurring in a living organism makes up a
part of autocatalytic network of biochemical reaction pathways. The reactions are cat-
alyzed by enzymes, functional proteins, and/or cofactors which, again, are produced
through the reaction network responsible for sustaining life. Though the network of in-
tracellular reaction constitutes an intricate web of pathways interfering with each other,
molecular level description of metabolism has been mainly pursued on the specific path-
way basis, such as glycolysis/gluconeogenesis, citrate cycle, and other catabolic/anabolic
reaction pathways. Only recently, advances in high-throughput experiments and the
computing power incorporating diverse data sets collectedin genomic research make it
possible to construct cellular networks of metabolism, signal transduction, genetic regu-
lations, and protein-protein interactions in genome-wideperspectives. At the same time,
many quantitative theoretical methods including graph theories and other mathematical
tools developed from diverse disciplines attract much attention to tackle the large-scale
networks.

In the early graph-theoretic approaches to the metabolic network, attention has been
paid to the so-called scale-free feature of topological structure [1], small-world-ness [2],
modularity [3] and hierarchical organization [4]. Despitethe immanent specificity in
cellular functions of various organisms, the connectivity, or number of connections each
node (metabolite or associated reactions) has, is generally far from homogeneous. In
particular, this connectivity distribution of the metabolic network, as shared by many
naturally occurring complex networks, follows a power law,meaning large deviations in
spite of well defined average value. It is this context that borrows the termscale-free net-
work, where hubs, nodes with large number of connections, play essential roles. When
such hubs are removed or turned off, the whole system becomesvulnerable. Indeed,
it was found [5] that, for the yeast protein interaction network, hub proteins are more
likely to be lethal than the others.

In the framework of networks, metabolic reactions and participating metabolites can
be mapped into alternating nodes, where the outward(inward) connections from a re-
action node indicate that those metabolites are produced(consumed) as a result of the
reaction. Once constructing a directed bipartite graph in this way, we calculate graph-
theoretic quantities that characterize the global topology and give a clue to assessing
lethality of metabolic reactions. Then, we study the putative correlations between the
metabolic flux level and the lethality of each metabolic reaction using the flux balance
analysis(FBA) [6]. Here, by lethal, we mean the organism could rarely synthesize the
indispensable biomass, or the flux of the biomass reaction issignificantly reduced when
that reaction is blocked or removed from the network, mimicking gene knockout exper-
iments. One of our main results, obviously counterintuitive, can be phrased as super-
highway is no more lethal than sideways. It is related with the fact that the high-flux
reactions have abundant bypasses or backup pathways.

We also introduce the Boolean network scheme, an idealization of the metabolic net-
work as a wiring of binary logic gates to elucidate the pathway structure of the network
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on the logical basis. Considering the knockout and consequent cascading failure in the
metabolic reaction network as an avalanche, we investigatethe distribution of avalanche
sizes to find it a unique measure of lethality. The distribution also follows a power
law with the characteristic exponent around 2.5, pervasivethroughout disparate model
systems having self-organized criticality [7].

In the latter part, we study thesynthetic lethality, the effects of simultaneous multiple
knockout. A pair of genes or reactions catalyzed by their gene products can be collec-
tively lethal when they are removed simultaneously from thenetwork, which manifests
that the two reactions are responsible for the same functionor pathway, or complemen-
tary in the sense that one takes place of the other otherwise silent. Synthetically lethal
reaction pairs show strong correlations between lethalityand their avalanche size, and
are distributed over distinct pathways, reflecting deeper entanglement implicit in the
global network.

Materials and Methods
We use, with minor curation, the recent revision ofin silico modelE. coli [8], which was
obtained by searching databases, such as LIGAND (http://www.genome.jp/kegg/ligand.html),
EcoCyc (http://www.ecocyc.org), TC-DB (http://tcdb.ucsd.edu/), and referring to up-
dated literatures on sequence annotation [9]. To mimic random or targeted mutation
strains, a specific reaction is removed from the network and the resultant metabolic ca-
pabilities are to be assessed. For this purpose, we introduce a single pivotal reaction, the
biomass reaction, originally formulated as a linear combination of essential metabolic
reactions giving rise to the growth of the organism [10]. Throughout the study, lethality
of a certain reaction or corresponding gene products is determined by the flux of this
biomass production, which is contingent to the ansatz of optimality that the selection
pressure has imposed in the long history of evolution.

Metabolic Network as a Graph. The overall map of metabolic reactions we study is a
bipartite graph, composed of two different types of nodes, 627 metabolites and their par-
ticipating 1074 metabolic reactions including transport and exchange events. One type
of nodes connect only to the other type of nodes in the networks1. Each link between
a pair of a metabolite and a reaction is directed, reflecting the metabolite is either con-
sumed (substrate) or produced (product) or both in reactions. Of the 1074 reactions, 254
reversible reactions are decomposed into two separate reactions catalyzed by the same
enzyme. 627 distinct metabolites have either their intracellular or extracellular version
or both, which sum into 761 distinct nodes of metabolites. Once the metabolic network
is reconstructed as a graph, we quantify, by various numerical measures, the lethality of
each node in the wild-type strain and compare them with thoseof knockout mutants.

1Depending upon the objectives, it can be projected to recover the single-mode metabolite network or
reaction (enzyme) network.
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Flux Balance Analysis (FBA). For each metabolite in the metabolic reaction network,
dynamic flux balance condition on the concentrationXi can be written as

∂Xi

∂t
= −

n∑

j=1

Sijφj , (1)

whereφj is the corresponding reaction rate (outward flux), andSij are stoichiometric
coefficients involved in the metabolitei ∈ {1, 2, · · · , m} participating in the reaction
j ∈ {1, 2, · · · , n} including transport and exchange reactions also. As an alternative
to yet intractable kinetic models in genome-wide perspectives, mass conservation can
be applied in the balanced state to give the stationary condition

∑
j
Sijφj = 0 for all i.

Stoichiometric matrix encodes the topology of the metabolic network and gives how the
complex reactions are entangled with one another. Once the stoichiometric coefficients
are given for all reactions, we have, in general, under-determined situation(m < n)
where huge degeneracy in the null space of Eq. (1) is unavoidable. Actually, this multi-
plicity in the feasible metabolic state can be considered a manifestation of the capability
of a metabolic genotype. It makes physiological sense in that cells are expected to
adapt themselves responding to different stresses and growth conditions. Among those
feasible metabolic phenotypes, FBA assumes the existence of optimized point(s) of a
certain objective function, called biomass reaction or growth flux, by utilizing further
constraints based on the thermodynamic irreversibility ofreactions.

The Boolean Network. Metabolic reactions or genetic switches are seldom turned on
or off. Instead, they can change by some fold, either up- or down-regulated, to make a
physiological payoff. As a first approximation, Boolean idealization has long been in-
troduced to reconstruct the genetic regulatory network as adirected graph [11] and was
recently adopted to model the metabolic network [12]. In Boolean reconstruction of the
metabolic network, each node in the graph is replaced with binary logic gate AND or
OR. A metabolite would not cease to be existent in the networkuntil all the reactions
having that metabolite as a product are blocked, while a reaction does not take place any
more with only a single absence out of substrate metabolites, which renders the metabo-
lites Boolean disjunction, OR, and reactions conjunction,AND as exemplified in Fig. 1.
With all nodes given an initial condition, we iteratively relax the network till the network
is settled in a fixed point.

Cumulative Lethality Score. As a way to reveal the correlation between avalanche
size and lethality, we use the index, cumulative lethality score (CLS), the original ver-
sion of which was introduced in the context of protein essentiality prediction [13]. Once
a measure of lethality, say the load of each node, is proposed, we can make a serial list
of reactions assorted in descending order of the proposed lethality measure. With the
lethality criteria determined through the viability underthe single deletion of each reac-
tion, we can assign a binary lethality score, one or zero, into each reaction depending on
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whether it is lethal or not. Summing up the binary scores fromthe first rank to thejth
rank in the value of the proposed quantity, say, flux level, weget the CLS, say,L(j). If
the proposed quantity is positively(negatively) correlated with the lethality,i.e. reactions
holding high ranks are dominated by the binary lethality score one(zero), the normalized
CLS manifests itself as a convex(concave) curve. Otherwise, if it is a random sequence
of zero’s and one’s,L(j) is given by a straight line. That is, the more correlated is the
measure with the lethality, the higher curvatureL(j) develops.

Results and Discussion
Flux Level versus Lethality. Under aerobic condition with glucose as a unique external
carbon source2, we identify 210 (19.7%) lethal reactions out of 1064, the single blockade
of which suffocates the biomass production. It is similar infraction to the essential
fraction ofS. cerevisiae genome, 18.7% [15, 16, 17].

The flux distribution in the wild-type metabolic network follows a power-law in
Pareto’s form,P (φ) ∼ (φ + φ0)

−α. Metabolic traffic is concentrated along a few ‘su-
perhighway’ reactions, while the vast majority of reactions are in charge of only a small
flux [18]. In the meantime, inspired by the roles the main arteries, principal roads, or
backbones play in blood circulation, transportation, or data communications, we exam-
ine the possibility that the flux level should reflect the lethality of each reaction. Fig. 2
shows that the plausible correspondence between flux level and lethality is a mere con-
jecture to prove not true. In other words, there is no correlation at all between those
quantities, and high flux itself has nothing to do with the lethality of a reaction, which
obviously contradicts our intuition. We also investigate the flux redistribution profile
upon deletion of a high-flux reaction. Reaction fluxes are redistributed either locally or
globally. Here, by local, we mean the case that very few reactions, having almost zero
flux in the wild type, fully take over the flux of the reaction deleted. However, in the
global redistribution, the flux of the removed reaction is shared over a large number of
reactions to keep optimal biomass production.

Avalanche Size versus Lethality. In the Boolean reconstruction of theE. coli metabolic
network, 41 lethal reactions are identified, which are all lethal in FBA also. It is no won-
der, if we consider that lethality in binary scheme is minimal and more stringent than in
the weighted version of FBA. To quantify the effect of a single-node deletion, we define
the avalanche size of each reaction, in the Boolean scheme, as the number of reactions
subsequently turned off on account of targeted removal of that reaction.

As shown in the inset of Fig. 3, the avalanche size distribution for E. coli metabolic
2Throughout the numerical experiments, acetate(ace), alpha-ketoglutarate(akg), glucose(glc), glyc-

erol(glyc), lactate(lac-L, lac-D), malate(mal-L), pyruvate(pyr), and succinate(succ) are used as the carbon
sources, for each of which, we also control the oxygen uptakerate. Though the lethality of a reaction
does depend on which are used as carbon sources, across whichit is largely preserved. For details of the
nutrient-dependent results, seeSupporting Information.
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network also displays a power law behavior with a fat tail, implying there exist a few
reactions whose deletion triggers a large destructive avalanche cascade in metabolic
reaction. In mathematical aspects, at criticality, there exists an infinite spanning cluster
enough to reach the ultimate destination, biomass. Thus, avalanche size could be useful
to find lethal reaction. Indeed, the reaction which generates a bigger avalanche size is
more likely to be lethal as seen in the CLS plot (main panel of Fig. 3).

One may want to check the possibility that nearer nodes to thebiomass reaction
should be liable to be lethal. However, of the 374 distinct reactions that produce the
substrates of biomass reaction, only 13 of them are lethal inthe Boolean scheme, making
the identification of lethal reactions nontrivial—proximity to the biomass reaction has
nearly nothing to do with the lethality of a reaction.

The notion of the avalanche in the network can be extended to the FBA scheme,
where the avalanche size of a reaction is defined as the numberof reactions whose flux
levels under its knockout differ from those in the wild type.Actually, we used three
different criteria of the avalanche: (i) reactions are newly turned on or off, (ii) flux level
change exceeds an arbitrary cutoff value, and (iii) fractional changes in flux exceeds the
cutoff value. There is, however, little difference among the different counting schemes.
Fig. 4, drawn by using the first criterion above, reveals the absence of correlation be-
tween the flux level and the avalanche size both in the Booleanscheme and in FBA,
which is consistent with the fact that flux level is irrelevant to assessing lethality.(Fig. 2)

Due to the small-world-ness of the complex network, local perturbations are liable
to propagate to the whole network leading to the sharing of load, which underlies the
system-wide high flexibility. At the same time, because of the scale-free-ness, avalanche
cascade can either be long-ranged by making a large number ofnodes bear parts of the
‘expenses’ or be absorbed at a short distance from the sourceof perturbation, depending
on the detailed functional characteristics of the reaction. In other words, the response to
single deletion perturbation of a single reaction are too diverse to definitely predict how
they would be, and so they can be predicted in a probabilisticway [19]. Identification of
lethal reactions in metabolic network can be viewed in the same footing. The effects of
a node removal or a gene deletion are largely negligible as a whole, which is manifested
by the dominance of nonlethal reactions. However, even if a reaction is not lethal, its
potential damage to the network varies. It is this insufficiency in lethality assessing that
raises the need for the knowledge of synthetic lethals in thenext section.

Synthetic Lethality in Metabolic Network. The close genetic relationships between
genes which underlie the functional buffering has been associated with the notion of syn-
thetic lethality. It has been assessed in a high-throughputmanner by the synthetic genetic
array(SGA) analysis [15]. Likewise, analysis of multiple-deletion mutants in genome-
scale metabolic network may shed light on novel topologicalfeatures of backup path-
ways leading to the robustness. In the restricted level of metabolism, such relationships
can be revealed more clearly by performing the double reaction knockout experiments,
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which can be easily performedin silico. Furthermore, such metabolically synthetic
lethal pairs identified allow us to track the backup pathwaysexplicitly and to visualize
the precise microscopic origin from which the metabolic flexibility arises.

When the glucose is used as a carbon source in aerobic condition, 55 synthetic lethal
pairs are identified (Table I). The relatively small number of synthetic lethal pairs sug-
gests the low density of backup pathways for a given specific condition in the metabolic
network and is in accordance with the case of the yeast [20]. Among these, 33 (60%)
pairs are involved in the same subdivision of the reaction categories. As expected, most
of those homofunctional synthetic lethals usually work as the ‘simple’ backup pathway:
One of the pair is not used in the wild type at all but it almost completely takes over the
flux of the blocked reaction (64%) as depicted in Fig. 5(a). Interestingly, the homofunc-
tional synthetic lethals of the other type, for which both the reactions are operational
in the wild type, are mostly involved in the two subsystems ofthe pentose phosphate
cycle and threonine-lysine metabolism. Excluding these particular cases, 91% of homo-
functional synthetic lethals are simple, while, for the other 22 heterofunctional synthetic
lethals, only 9 (41%) of them are the simple backup pathways.In total, 25 pairs were
both operational in the wild type and the remaining 30 are paired in one used and one
unused in the wild type.

We also study the synthetic lethality in the Boolean scheme.In the Boolean scheme,
37 pairs of synthetic-lethal doublets are identified in addition to 41 lethal singlets. Then,
we focus on the functional categories lethal reactions belong to. In Fig. 6, it’s noteworthy
that cell envelope biosynthesis dominates (78%) all the other reaction categories under
single knockouts in the Boolean scheme, which means lack of backup pathways, while
the synthetic lethals are scattered throughout diverse functional categories.

Conserved across both the network scheme is the proximity ofthe two reactions
constituting a synthetic-lethal pair. Fig. 5(c) illustrates the distance distribution for the
synthetic-lethal reaction pairs, around 65% of which are just two step apart sharing
common metabolites, and over 95% of which are within four steps. Considering that an
arbitrary pair of reactions are connected in two steps with the probability 30%, synthetic
lethals are highly lumped with each other in the metabolic reaction network. Whether
the analytical scheme is Boolean or FBA, long-ranged complicity of synthetic lethals
through the intermediary of a ‘filamentary’ single pathway like in Fig. 5(b) comprises
only a small fraction(<5%) of synthetic-lethal pairs, and is rather an exceptionalcase.

Another important outcome regarding synthetic lethality is already shown in Fig. 3,
where we measure the avalanche size of the synthetically lethal doublets and triplets
in addition to that of the singlets. Synthetic-lethal multiplets give rise to even higher
correlation of their avalanche size with the lethality. In effect, robustness in metabolic
network stems from redundancy in branched and parallel pathways. Conversely, lack
of reaction pathways, whether it is due to the unique biochemical nature or to the de-
fects in pathway database, lead to vulnerability. Hence, the more we know about a
reaction pathway, the less probable it should contain lethal reactions. In particular, we
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cannot completely rule out the latter possibility: Accumulated bias in molecular biol-
ogy research, if any, might be crucial to our result that generic pathways across the
species, such as the citrate cycle or the glycolysis pathways, have very few lethal reac-
tions (Fig. 6). However, at least forE. coli, one of the best known bacteria yet studied,
there are no good reasons to suspect such a bias. Moreover, our analytical results are
compatible with the fact that a wide-spread strategy of antimicrobials is acting against
cell wall synthesis(fosfomycin, cycloserine) or integrity(lysozyme). Rather to be sup-
posed is that the more important a reaction is, the better facilitated its backup pathways
have been during evolution.

Summary and Outlook
Systematic deletion study in a genome-wide view of model organisms help reveal the
organizing principles of the metabolic network and may shedlight on how the selec-
tion has been embodied at the network levels, and especiallythe recent controversy
surrounding the causes and evolution of the enzyme dispensability [20]. As an index
quantifying lethality in the graph-reconstructed metabolic reaction network, we propose
the avalanche size of each reaction, the number of ‘dead’ reactions due to the knockout
of that reaction or its related gene products to show an even more remarkable interde-
pendence than various measures yet proposed. By identifying synthetic lethals or lethal
multiplets in the genome-scale metabolic network under controlled environments, we
see the emergence of new phenotypes supported by rich backuppathways, which is
shared by diverse levels of biological networks. Studies onmultiple deletion mutations
in metabolomic interaction network can also be applied to natural metabolomic varia-
tions, reminiscent of single-nucleotide polymorphism, giving rise to practical buffering
or phenotypic robustness under targeted mutations [15, 21,22]. Furthermore, if we in-
corporate network analyses on metabolism with the gene-protein-reaction associations
by including the other sectors of intra- and inter-cellularnetworks, it can be used in
designing new microorganismal strains on the computer truly beyond the reductionist
perspectives.
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Figure 1: A subgraph of the citrate cycle inE. coli metabolic network. In Boolean
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Figure 2: Normalized cumulative lethality score with respect to the wild-type flux levels
grown on distinct carbon sources. Flux level shows no conspicuous convexity, if any,
implying they cannot be a lethality measure.
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Figure 3: Normalized cumulative lethality scores drawn forthe avalanche size of single
and multiple deletion in the Boolean version of theE. coli metabolic network. Inset:
Boolean avalanche size distribution under single targeteddeletion of each reaction fol-
lows a power-law with the (noncumulative) exponent 2.5.
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Reaction I Reaction II Category I Category II φI, wild φII, wild
ASNS2 ASNS Alanine, aspartate metabolism " 0.298933 0.000000
ALAR ALARi Alanine, aspartate metabolism " 0.072057 0.000000
PPC MALS Anaplerotic reactions " 3.519873 0.000000
PPC ICL Anaplerotic reactions " 3.519873 0.000000
DKMPPD2 DKMPPD Arginine, Proline Metabolism " 0.009138 0.000000
ORNDC ARGDC Arginine, Proline Metabolism " 0.054826 0.000000
ORNDC AGMT Arginine, Proline Metabolism " 0.054826 0.000000
GLUDy GLUSy Glutamate metabolism " -10.86474 0.000000
KAS15 KAS14 Membrane Lipid Metabolism " 0.41942 0.000000
ADK ADK3 Nucleotide Salvage Pathways " 3.284564 0.000000
RNTR2 RNDR2 Nucleotide Salvage Pathways " 0.033157 0.000000
RNTR2 NDPK5 Nucleotide Salvage Pathways " 0.033157 0.000000
RNTR NDPK8 Nucleotide Salvage Pathways " 0.032243 0.000000
RNDR3 RNTR3 Nucleotide Salvage Pathways " 0.033157 0.000000
NDPK7 RNTR3 Nucleotide Salvage Pathways " 0.033157 0.000000
NDPK ADK3 Nucleotide Salvage Pathways " 1.045572 0.000000
GARFT GART Purine, Pyrimidine Biosynthesis " 0.623856 0.000000
DHORD5 DHORD2 Purine, Pyrimidine Biosynthesis " 0.411327 0.000000
O2t SUCCt2b Transport, Extracellular " 20.00000 0.000000
PIt2r PIabc Transport, Extracellular " 1.190038 0.000000
TRPS3 TRPS Tyrosine, Tryptophan, Phenylalanine Metabolism " 0.070490 0.000000
RNDR RNTR Nucleotide Salvage Pathways " 0.269780 0.032243
ADK NDPK Nucleotide Salvage Pathways " 3.284564 1.045572
RPE TKT2 Pentose Phosphate Cycle " 5.716916 2.573754
RPE TKT Pentose Phosphate Cycle " 5.716916 3.143163
RPE TALA Pentose Phosphate Cycle " 5.716916 3.110267
TALA TKT2 Pentose Phosphate Cycle " 3.110267 2.573754
TALA TKT Pentose Phosphate Cycle " 3.110267 3.143163
TKT TKT2 Pentose Phosphate Cycle " 3.143163 2.573754
GND TKT2 Pentose Phosphate Cycle " 10.42057 2.573754
GND RPE Pentose Phosphate Cycle " 10.42057 5.716916
THRAr THRS Threonine, Lysine Metabolism " -0.26978 0.405103
THRAr HSK Threonine, Lysine Metabolism " -0.26978 0.405103

ORNDC UREAt Arginine, Proline Metabolism Transport, Extracellular 0.054826 0.000000
ORNDC EX_urea Arginine, Proline Metabolism Exchange 0.054826 0.000000
GALUi GALU Cell Envelope Biosynthesis Alternate Carbon Metabolism 0.025847 0.000000
FUM SUCCt2b Citrate Cycle (TCA) Transport, Extracellular 1.368573 0.000000
FRD2 DHORD2 Citrate Cycle (TCA) Purine, Pyrimidine Biosynthesis 0.411327 0.000000
MTHFD GART Folate Metabolism Purine, Pyrimidine Biosynthesis 1.365196 0.000000
MTHFC GART Folate Metabolism Purine, Pyrimidine Biosynthesis 1.365196 0.000000
CBMK CBPS Putative Arginine, Proline Metabolism 0.77814 0.000000
VALTA VPAMT Valine, leucine, isoleucine metabolism Alanine, aspartate metabolism -0.524765 0.000000
SUCD1i PPC Citrate Cycle (TCA) Anaplerotic reactions 0.414887 3.519873
FUM PPC Citrate Cycle (TCA) Anaplerotic reactions 1.368573 3.519873
SUCD4 PPC Oxidative phosphorylation Anaplerotic reactions 0.414887 3.519873
GARFT MTHFD Purine, Pyrimidine Biosynthesis Folate Metabolism 0.623856 1.365196
GARFT MTHFC Purine, Pyrimidine Biosynthesis Folate Metabolism 0.623856 1.365196
THRS GHMT2 Threonine, Lysine Metabolism Glycine, Serine Metabolism 0.405103 1.653370
HSK GHMT2 Threonine, Lysine Metabolism Glycine, Serine Metabolism 0.405103 1.653370
O2t PPC Transport, Extracellular Anaplerotic reactions 20.00000 3.519873
O2t DKMPPD2 Transport, Extracellular Arginine, Proline Metabolism 20.00000 0.009138
O2t FRD2 Transport, Extracellular Citrate Cycle (TCA) 20.00000 0.411327
O2t GAPD Transport, Extracellular Glycolysis/Gluconeogenesis 20.00000 32.61301
O2t PGK Transport, Extracellular Glycolysis/Gluconeogenesis 20.00000 -32.61301
O2t DHORD5 Transport, Extracellular Purine, Pyrimidine Biosynthesis 20.00000 0.411327

Table 1: List of synthetic-lethal reactions. Upper(lower) two cells include synthetic lethals
belonging to the same(distinct) functional categories, and the wild-type flux of each reaction is
given in units of mm/g DW-hr.
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